翻訳と辞書
Words near each other
・ Always (Pebbles album)
・ Always (Saliva song)
・ Always (short story)
・ Alvise Contarini (diplomat)
・ Alvise De Vidi
・ Alvise Giovanni Mocenigo
・ Alvise Giusti
・ Alvise I Mocenigo
・ Alvise II Mocenigo
・ Alvise Pisani
・ Alvise Tagliapietra
・ Alvise Vivarini
・ Alvise Zorzi
・ Alviso Adobe Community Park
・ Alviso, San Jose, California
Alvis–Curtis duality
・ Alvite
・ Alvite (Cabeceiras de Basto)
・ Alvite e Passos
・ Alvito
・ Alvito (São Pedro e São Martinho) e Couto
・ Alvito D'Cunha
・ Alvito Dam
・ Alvito de León
・ Alvito Nunes
・ Alvito Rodrigues
・ Alvito, Lazio
・ Alvito, Portugal
・ Alviyeh-ye Zahra
・ Alvo


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Alvis–Curtis duality : ウィキペディア英語版
Alvis–Curtis duality
In mathematics, Alvis–Curtis duality is a duality operation on the characters of a reductive group over a finite field, introduced by and studied by his student . introduced a similar duality operation for Lie algebras.
Alvis–Curtis duality has order 2 and is an isometry on generalized characters.
discusses Alvis–Curtis duality in detail.
==Definition==

The dual ζ
* of a character ζ of a finite group ''G'' with a split BN-pair is defined to be
:\zeta^
*=\sum_(-1)^J\zeta^G_
Here the sum is over all subsets ''J'' of the set ''R'' of simple roots of the Coxeter system of ''G''. The character ζ is the truncation of ζ to the parabolic subgroup ''P''''J'' of the subset ''J'', given by restricting ζ to ''P''''J'' and then taking the space of invariants of the unipotent radical of ''P''''J'', and ζ is the induced representation of ''G''. (The operation of truncation is the adjoint functor of parabolic induction.)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Alvis–Curtis duality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.